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Abstract— This article provides an explicit general solution of an infinitely extended plate containing
any number of circular inclusions under antiplane deformation. The derived solution of the present
heterogeneous problem associated with multiple inclusions is obtained in terms of the corresponding
homogeneous solution by a simple algebraic substitution. This is accomplished by the technique of
analytical continuation and the method of successive approximations. A rapidly convergent series
solution either in the matrix or in the inclusions, which is expressed in terms of an explicit general
term involving the complex potential of the corresponding homogeneous problem, is derived in an
elegant form. The present derived solution can also be applied to the inclusion problem with straight
boundaries. Numerical examples of three circular inclusions embedded in an infinite matrix, in a
half-plane matrix, and in a strip are discussed in detail and displayed in graphic form. Interaction
of a crack with multiple circular inclusions is also considered. ©) 1998 Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

The problem of interacting cracks near a single inclusion has been investigated by many
researchers. One of the most powerful methods in solving this problem is based upon the
method of analytical continuation which allows us to easily deal with interface continuity
conditions along the common boundary between dissimilar media. Following this approach,
the derived solution associated with the heterogeneous problem can be obtained in terms
of the corresponding homogeneous solution by a simple algebraic substitution. By applying
the existing solution for dislocations in the homogeneous problem, a system of singular
integral equations for the related crack problems is then obtained in a way that the relevant
boundary conditions along the crack border should be satisfied. As to the problem with
multiple inclusions, the above-mentioned methodology, however, cannot be directly used
to deal with two or more separate interfaces that a closed-form solution is difficult to
achieve. The particular problem of two circular inclusions under longitudinal shear loading
has been solved by Goree and Wilson (1967) using a mapping function with the aid of a
bilinear transformation. Sendeckyj (1971) resolved the same problem by applying a suc-
cessive approximation method. The corresponding problem of two traction-free holes has
been considered by Steif (1989) using a series solution. Zimmerman (1988) further discussed
the stress concentration around a pair of circular holes in a hydrostatically stressed elastic
sheet solved by Kienzler and Duan (1987) who derived a simple formula to calculate the
distribution of hoop stresses by employing the Fourier series expansion. Based on the use
of complex potentials and the Laurent series expansion method, Gong (1995) solved the
antiplane problem with multiple circular inclusions. Elastic fields of interacting inhom-
ogeneities were studied by Horii and Nemat-Nasser (1985) using the method of pseudo-
tractions. Recently, Chao et al. (1997) investigated the problem of interacting circular
inclusions in plane thermoelasticity by the use of Laurent series expansion. All the afore-
mentioned approaches, however, are cumbersome due to the necessity of solving the large
system of equations resulting from interfacial boundary conditions. Besides, those approaches
are unable to deal with the interaction between cracks (or singularities) and multiple
inclusions. To overcome the shortcoming of the above-mentioned methods, the technique of
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analytical continuation and the method of successive approximations are exploited here to
solve the multiple inclusion problem which permit us to express the solution as a rapidly
convergent series. Since the complex potential of the corresponding homogeneous problem
is involved in a series solution, studies on the interaction of cracks or singularities with
multiple inclusions can be easily achieved by solving a system of singular integral equations.
Note that, the present proposed method can be applied not only for the inclusion problem
with circular boundaries but also for the inclusion problem with straight boundaries.

In this paper, our purpose is to derive an explicit general solution of the antiplane
problem containing an arbitrary number of inclusions with circular or straight boundaries.
The derived closed form solution for the problem containing multiple inclusions is expressed
in terms of the corresponding homogeneous solution. This merely implies that the solution
associated with the heterogeneous problem containing any number of inclusions can be
determined immediately once the problem when the matrix material occupies the whole
space and is subjected to the same loading (singularities) is solved. This was termed
“heterogenization” by Honein et al. (1992a). By introducing the dislocation functions
associated with the homogeneous problem, the mode-lII stress intensity factor for the
heterogeneous problem can be directly obtained by solving the singular integral equations
with a logarithmic singular kernel. Numerical examples of three circular inclusions inter-
acting with an arbitrarily located crack are given to illustrate the use of the present approach.
The resuits presented here may assist in studies of crack interaction with a non-uniform
distribution of fibers in a composite under antiplane deformation.

2. INTERACTING CIRCULAR INCLUSIONS

Consider the antiplane problem of an arbitrary number of circular inclusions embedded
in an infinitely extended solid. Each circular inclusion has different elastic constants from
those of the matrix. Let the regions S; be occupied by an array of circular inclusions centered
with z;, of arbitrary radii 4; and of different shear moduli y, which are perfectly bonded to
the region S occupied by the matrix of infinite extent and of shear modulus u (see Fig. 1).

L

-

Fig. 1. Multiple circular inclusions perfectly bonded to an infinite matrix.
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Our purpose is to find the stress potentials ¢(z) and ¢¥(z) where all the singularities (loads)
are in the matrix. Under antiplane deformations, the displacement u, resultant force p and
shear stresses g, 0,,in x- and y-directions, respectively, can be represented in terms of the
stress potential as (Muskhelishvili, 1953)

o = 2Re[¢(z)] M
p=foqdy—o,dx= —2Im[ud(z)] (2)
oy = 2Re[ud’(2)] (€))

o, = 2Im [ug'(2)] )

where a prime indicates differentiation with respect to the complex variable z. Re and Im
stand for the real part and imaginary part, respectively, of a complex function. Before
solving this problem with multiple inclusions, we first seek the solution of a single inclusion
occupying a region, say S, as the form

0(2) = o)+ (2). zeS (5)

¢ = ¢V () zeS, ©)

where ¢,(z) represents the solution corresponding to the homogeneous media which is
holomorphic in the entire domain except for some singular points. ¢(z) (or d)“)(")) is the
solution associated with the perturbed field of matrix (or inclusion) which is holomorphic
in the region S (or S)). By applying the continuity conditions u = u, and p = p,, and using
the continuation theorem (Muskhelishvili, 1953), one may obtain the following results
(Chao and Chiang, 1996)

O(z) = Py(z )+“|¢0(A z), zeS N
¢V () =T +a)po(z), z€S, (8)
with
H— 1
o 9
i Ht @

where A4,(z) represents the transformation function defined as 4,z = a}/(z—z,)+z,. The
overbar denotes the conjugate of a complex function. As to the problem with two circular
inclusions, the expressions (7) and (8) are certainly not suitable for this problem since the
continuity conditions associated with the second inclusion are not satisfied. Next, we seek
the solutions pertaining to the domains S, S, and S,, which are required to satisfy the
continuity conditions along the interface L, between the second inclusion and matrix. In
order to satisfy the interface conditions along the boundary of the second inclusion, the
expressions (7) and (8) are now modified to the following expressions :

$(2) = fo(D) +[(z), zeS (10)
0 (2) =(14+%)do () +f(2). z€S, (11)
07(2) = fo(2) +4(2), z€Ss (12)

with
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fo(2) = @o(2) +a,do(4,2) (13)

where f(z) (or g(z)) represents the stress function associated with the perturbed field of
matrix (or inclusion) which is holomorphic in the region S (or S,). Using the continuity
conditions of the displacement and resultant force along the interface z = o = z,+a, €,

we have the following two equations:

flo) +f(0) = g(0)+g(0) (14)
uLfo(0) +(6) —fo(0) —f(0)] = 21 /o (o) +9(0) —fu(0) —g(0)] (15)

By applying the continuation theorem (Muskhelishvili, 1953), one may define a new set of
complex potentials 8,(z) (j = 1,2), which is holomorphic in the entire domain including the
interface as

0,(2) = f(2) —g(A:2) (16)
0:(2) = plf2)—fo(A: D]+ pa [fo (A22) — g (A:2)] (17)
for ze S+.5,, and
0,(2) = g(2) —[(4:2) (18)
0:(2) = palfo () + gD + uflA D)~ fo(2)] (19)

for ze S,. A,z represents the transformation function defined as 4,z = a3/(2—2,) +z,. Since
0.z) are now holomorphic and single-valued in the whole plane including the point at
infinity, by Liouville’s theorem we have 0, (z) = const. However, the constant functions
0,(z) can be treated as a rigid body motion and can thus be assumed to be zero without loss
in generality. Based upon this result, (16)—(19) yield the following expressions

[2) = a3fo(A52) (20)
9(2) = a3/o(2) @n
with
H—
, = 22
. 1Ry 1) (22)

With the help of (20) and (21), the expressions in (10)—(12) become

d(z) = Po(2) + o ho(A12) + 2o (A22) +ar00, (A4, 4,2) (23)
d)“)(z) =(1+0;)Po(2) + %o (Ar2) + a0,y (A, 4,2) (24)
d?(2) = Po(2) + o, Po(A,2) + 0,00 (2) + 022, P (A, 2) (25)

In view of the expressions (23)—(25), the continuity conditions are now satisfied at the
interface L,, but not at the interface L,. Repeating the previous steps and obtaining the two
additional terms each time, the results of which the continuity conditions are satisfied at
both the interfaces L, and L, can be obtained as the following explicit forms
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#(2) = ¢y(z) + }xj Uy 1(Az), z€S (26)
fe=1
$VE) = do(B+ 3 {210 + 0P (D). zES) @
n=0 .
$PC) = pi(@+ S {sab ()0, Bars2(4,D)}, 2ES, (28)
with
¢.(z) = 4’0(2)"‘0‘14)0(1‘1125 (29)
@.(2) = oy, ((Anz), nZ2 (30)

where (> = 1forn=1,3,5,7,9,...,etc.,and {n) =2 forn=2,4,6,8,10, ..., etc. The
expressions given by (26)—(28) are exactly the same as those obtained by Honein er al.
(1992b) who employed the methodology of ‘‘heterogenization™ and the structure of Moe-
bius transformations. Based upon the method of successive approximations described
earlier, the solutions, similar to the expressions (26)--(28) obtained for two circular
inclusions, can be extended to the problem containing any number of circular inclusions
(m = 2) as the following elegant forms

wﬂ=m@+ig@@4mwa zes 31

n=

e |

¢(/)(2) = ¢;’— 1 (Z) + SO {ajquxnwtj— i (Z) + ; a<i+l'>¢nl><n+i+,/" 1 (A<l+/>2)}’

ze§, (1<j<m (32)

with

i(2) = ¢, (2) +0‘</>¢1~1(A</>Z), l<li<m—1 (33)

d)(2) = kz Ot Prir1 (Au_inz), [2m (34)
=0

where m is the number of circular inclusions and the symbol (#) is defined as
{ny = REM{(n—1)/m} +1 (35)

Here the function REM{(n— 1)/m} represents the remainder of the fraction (n—1)/m. For
example, when m = 3, REM{(n—1)/3} =0,forn=1,4,7, 10, etc., REM{(n—1)/3} = 1,
forn=2,5,8,11,etc.,and REM{(n—1)/3} = 2,forn = 3,6, 9, 12, etc. From the definition
(35), it is understood that {n) < m. The parameter a; and the transformation function 4,z
appearing in (31) and (32) stand for

KT

36
e (36)

J

and
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T (37)

corresponding to the j-th circular inclusion. It is worthy to note that the present derived
solutions can also be applied to the inclusion problem with straight boundaries if one
replaces (37) by

Az = 2+2ih, (38)

for the corresponding multiple layer problem with the depth h; associated with the j-th
material layer. Equations (31) and (32) give the general series solutions to the antiplane
problem contairing an arbitrary array of m circular inclusions provided that the cor-
responding homogeneous solution ¢,(z) is appropriately solved. Note that the series solu-
tions in (31) and (32) are uniformly convergent on compact sets provided |o| < 1. The case
%; = 1 corresponds to a circular hole while a; = — 1 corresponds to a rigid inclusion. In all
other cases |a] < 1 as expected from (36). Even for the case of ;=1 or a; = —1. the
convergent series solutions representing the derivative of the complex potentials of the
stress field can also be achieved if one differentiates the formal series solutions (31) and
(32) term by term (Honein et al., 1992b).

3. CRACK INTERACTION WITH INCLUSIONS

In this section, we consider a single crack embedded in the matrix under remote
uniform load (Fig. 2). The current problem can be treated as a sum of the corresponding
multiple inclusion problem without cracks and a corrective problem. The solution related
to the former problem an be directly obtained from (31) with ¢,(z) being

dolz) = 1,2 (39)

where 7., is the magnitude of remote uniform load appiied along the x-direction. On the
other hand, a corrective solution associated with a single crack L can be obtained by
substituting

Al
~
8

® ® ® ® ® ®
‘._
OBNORNORNORNORNO),

Fig. 2. A single crack interacted with multiple circular inclusions.
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b0 = — 5. | P10z 40)

into (31). The unknown function by(r) in (40) can be determined in the sense that the
traction free acting on the crack surface associated with a corrective problem must be
balanced by the given traction force p* resulted from the corresponding unflawed problem,
ie.

P2y = —2Im[up()]+co, tel 41)

where ¢, is an additive constant to be determined. In addition, the single-valued condition
when enclosing the crack surface must be satisfied, i.e.

j by(r)dt = 0 (42)
L

Substituting of (40) into (31) and applying (41) yield the singular integral equation together
with the subsidiary condition, (42), which may be solved numerically. To perform the
numerical calculations, the following interpolation formulae in local coordinates s,
(1 €j < N) (see Fig. 3) are introduced as (Chen, 1990)

, [2d
bo(t)) = boy ( Tl‘ - 1>+b0~1 (43)
/y

2d,
bo(ty) = bo n ( :2_11_}7 - l>+b().N1 (44)
NN
and
2d,—t L
bo(ty) = boj i +boor . Q<j<N-1) 45)
, ]

/

where d, (1 < j < N) are the half length of each line segment and b, (0 < j < N) are the

Fig. 3. Division and nodal distribution of a straight crack.
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unknown coefficients which can be determined numerically (Chen, 1990; Chao and Shen,
1995). Once the coefficients b, ; are determined, the mode-1II stress intensity factors can be
obtained accordingly as (Chen, 1990)

K (tip— A) = n(2m)"2 lim by (1,)1)? = 21 /nd, b o (46)
f —0
Kui(tip— B) = 7(2m)"* lim by (1) 2y — 1) = 2n/mdybo u (47)
In=2dy
4. EXAMPLES

The fundamental series solution derived in the preceding sections will be used to
analyze the following examples associated with three circular inclusions embedded in an
infinite matrix and in a half-plane matrix, and in a strip.

(a) Elastic inclusions under remote uniform load

As our first example, we consider three circular inclusions perfectly bonded to a matrix
which is subjected to uniform load 7., at infinity along the x-axis (see Fig. 4). The solution
of the corresponding homogeneous problem is trivially given as (39). The stress field
associated with the heterogeneous problem can be immediately obtained from (31) and
(32) with the aid of (3) and (4). In order to demonstrate the accuracy and usefulness of the
present proposed method, the stress concentration of the problem with two equal-sized
holes, which is determined by summing up the first thirty terms in (31), is illustrated in Fig.
5. It is shown that the present results agree very well with those obtained by Steif (1989)
even the case when the two holes approach each other. In the following examples, we only
focus on the local stress along a circular hole surrounded by two elastic circular inclusions
with equal radius ¢, = a,, and equal shear modulus y, = u,. Figures 6-9 display the dis-
tribution of the tangential stress along a circular hole influenced by the surrounding elastic
solutions. All the calculated results shown in Figs 6-9 are determined by summing up the
first forty terms in (31) which have been checked to achieve a good accuracy with an error
less than 0.1% as compared to a sum of the first sixty terms in (31). The stress distribution
along a circular hole affected by the presence of two surrounding elastic inclusions, when
they are arrayed parallel or perpendicular to the direction of remote load, is shown in Figs

Fig. 4. A circular hole surrounded by two circular elastic inclusions under a remote uniform load
along the x-axis.
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Fig. 5. Stress concentration of the problem with two equal-sized holes.

6-7. It is seen that the tangential shear stress along a hole is intensified or diminished
depending on the shear strength of inclusions and the relative location between the applied
load and the inclusions. Some interesting results show that, when a hole and two inclusions
are arrayed parallel to the applied load, i.e., § = 0 (see Figs 6 and 8), the stress con-
centration factor /7., reached at 8 = 90", along a circular hole increases (or decreases) as
the neighboring hard (or soft) inclusions approach a circular hole. On the contrary, when
a hole and two inclusions are arrayed perpendicular to the applied load, i.e., § = 90" (see
Figs 7 and 9), the stress concentration factor, reached at 8 = 90°, decreases (or increases)
as the neighboring hard (or soft) inclusions approach a circular hole. It is worthy to note
that the present derived solution is still valid for the case when two circular inclusions touch
cach other. It 1s found that the stress at the point of contact between a hole and the
neighboring elastic inclusions remains finite for any orientation of remote load while the
contact stress between two neighboring holes becomes unbounded for any orientation of
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Fig. 6. Tangential stress distribution along the hole boundary with f = 0°.
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Fig. 7. Tangential stress distribution along the hole boundary with § = 90°.
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Fig. 8. Stress concentration as a function of the spacing dja with § = 0",
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Fig. 9. Stress concentration as a function of the spacing d/a with § = 90
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remote load except for the case when a line joining the centers of the three holes is parallel
to the applied load.

(b) Point force acting on the half-plane surface
As a second example we consider a hole and two circular inclusions embedded in a
half-plane matrix which is subjected to a point force p, acting at its surface z = ih (see Fig.
10). The solution associated with the corresponding half-plane problem can be immediately
obtained by substituting 4,z = 2+ 2ih and «, = 1 into (31) with ¢,(z) being
Po(2) = po limlog(z—iy) (48)

Figures 11-13 exhibit the variation of the local stress along a circular hole influenced by

Do

( o L (
) ~ NN\

(9@

L

Tl b

Fig. 10. A circular hole and two circular inclusions perfectly bonded to a half-plane matrix.
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Fig. 11. Tangential stress distribution for different ratios of shear modulus with d/a = 1 and h/a = 3.
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Fig. 12. Tangential stress distribution influenced by two surrounding circular holes with s/a = 3.
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Fig. 13. Tangential stress distribution influenced by two surrounding rigid inclusions with k/a = 3.

3585



3586 C. K. Chao and C. W. Young

the surrounding circular inclusions. All the calculated results displayed in Figs 11-13 are
obtained from the series solution up to the first 192 terms in (31) which are checked to gain
a good accuracy. Let the distance between the circular hole and the neighboring inclusions
be d/a = 1 and the distance between the circular hole and the free surface of half-plane be
h/a = 3. The maximum stress along the boundary of the circular hole occurs at the angle 0
between 0 and 45° (or between 135 and 180°) depending on the shear modulus of the
surrounding inclusions (see Fig. 11). In fact, there are three parameters, namely, the relative
angle ¢, the distance g, and the ratio y,/u (or u,/u) affecting the local stress along a circular
hole. The relative angle ¢ is defined as the angle between a line tangent to the point of
interest along a hole and a line connecting the point of interest and the applied load. The
parameter p is defined as the distance between the point of interest along a hole and the
applied load. In general, the stress along a circular hole increases with decreasing of the
distance p while decreases with increasing of the angle ¢. Precisely, the tangential stress
along a hole would vanish at ¢ = 90" (or § = 90, 270° in the present case) even though the
distance p is infinitely close to zero. Increasing or decreasing of the tangential stress would
compete depending on the relative angle ¢ and the distance p. The stress concentration
along a circular hole can be further intensified (or diminished) by the surrounding inclusions
having a lower (or higher) shear modulus as discussed in example (a). Strong interaction
between a hole and two neighboring holes (or two neighboring rigid inclusions) is observed
if the distance d/a between them decreases as indicated in Figs 12-13. It is found that the
maximum tangential stress may occur along a hole near the point 6§ = 0” as the two
neighboring holes approach each other while near the point 8 = 457 as the two neighboring
rigid inclusions approach a hole. This is simply because the stress would dramatically
increase at the point along a circular hole which is nearest to the neighboring holes, On the
other hand, the stress may decrease at the point along a circular hole which is nearest to
the neighboring rigid inclusions.

(c) Point forces acting on the surfaces of a strip

As our third example we consider a hole and two circular inclusions embedded in a
strip with thickness 2/ which is subjected to a pair of equal and opposite concentrated force
at its surfaces (see Fig. 14). The corresponding homogeneous solution can be obtained by
adding the function ¢,(z) being (48) associated with the point force p, acting at z = ih and
the function 6,(z) being

( G\Po L, (

) ~ NNNN\\Y

h

D&
C T R

( o (

) ' -p, Ls)

Fig. 14. A circular hole and two circular inclusions embedded in an infinite strip with thickness 24.




On the general treatment of multiple inclusions in antiplane elastostatics 3587
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Fig. 15. Tangential stress distribution for different ratios of shear modulus with dfa = 1 and h/a = 3.

Po(z) = —py 1‘1_12 log(z+1iy) 49)

associated with the point force —p, acting at z = —ih. The solution associated with the
corresponding strip problem may be directly determined from (31) and (32) if one chooses
Ayz = 24 2ih, Asz = 2—2ih, and o, = a5 = 1. All the calculated results displayed in Figs
15-17 are based on the series solution up to the first 752 terms in (31) which are checked
to preserve a good accuracy. Figure 15 displays the tangential stress distribution along a
hole which is away from the surrounding elastic inclusions and the free surfaces of a strip
with the distance d/a = 1 and A/a = 3, respectively. The maximum tangential stress occurs
at the point 6 = 0° if the neighboring inclusions are made less rigid than the matrix and at
the point near 0 = 45° if the neighboring inclusions are made more rigid than the matrix.
Figures 16-17 show the local stress distribution along a hole as the neighboring rigid
inclusions (or holes) approach each other. The results indicate that, similar to the con-
clusions of the preceding examples, the maximum stress concentration, which occurs at the
point on the boundary of the hole which is nearest to the neighboring holes, becomes
unbounded as the distance between the hole and two surrounding holes decreases. On the
other hand, the maximum stress concentration, which occurs at the point around 8 = 50°
(or # = —50") on the boundary of the hole, remains bounded as the two surroundings rigid
inclusions approach the hole.

(d) Elastic solutions interacted with a crack

As a fourth example we consider a single crack interacted with three circular inclusions
with equal radius a; = a, = a; and equal shear modulus u, = yu, = u, embedded in an
infinite matrix (see Fig. 18). In order to demonstrate the accuracy of the present crack
problem, we now consider an infinite body containing a pair of circular holes spaced apart
by a distance 24 and a crack of length 2a located symmetrically on the line connecting the
centers of the two holes (see Fig. 19). The calculated stress intensity factors as displayed in
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Fig. 16. Tangential stress distribution influenced by two surrounding circular holes with Afa = 3.
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Fig. 17. Tangential stress distribution influenced by two surrounding rigid inclusions with h/a = 3.
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Fig. 18. A single crack surrounded by the three surrounding elastic inclusions with equal spacing
dia.
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Fig. 19. A pair of circular holes interacted with a crack.

Fig. 20, which are obtained from (46) with the number of line segment N = 50, are shown
to agree very well with those provided by Isida (1973). Figures 21 and 22 exhibit the
variation of stress intensity factors with the crack angle f where a crack is surrounded by
the three circular elastic inclusions with the spacing d/a = 3. It is found that the stress
intensity factor at tip-A4 increases with decreasing the ratio u,/u for the crack angle ranging
from —90°-—48° and from 42°-90° while decreases with decreasing the ratio y,/u for the
crack angle ranging from —48°-42°. This is because the presence of elastic inclusions may
act as a shield or an anti-shield depending on the relative location between the applied load
and the inclusions as discussed in the preceeding examples. Same arguments can also be
applied to the case for tip-B as seen in Fig. 22. The stress intensity factors at both tip-4
and tip-B are plotted in Figs 23 and 24, respectively, as a function of the spacing d/a with
the crack angle § = 90°. It is shown that the stress intensity factor at tip-A4 (or tip-B) tends
to monotonically decrease (or increase) as the surrounding holes (u,/u = 0) approach a
crack while the stress intensity factor at tip-4 (or tip-B) becomes to monotonically increase
(or decrease) as the surrounding rigid inclusions (#,/u = o0) approach a crack. As a limiting
case of d/a » 1, the dimensionless stress intensity factors approach one which coincides
with the result of the corresponding homogeneous problem containing a central crack.
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Fig. 20. Stress intensity factor as a function of the spacing d/a.
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Fig. 21. Variations of stress intensity factor at tip-4 with the crack angle .
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Fig. 22. Variations of stress intensity factor at tip-B with the crack angle ;.
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Fig. 23. Stress intensity factor at tip-4 as a function of the spacing d/a with y = 90°.
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Fig. 24. Stress intensity factor at tip-8 as a function of the spacing d/a with y - 0°.

5. CONCLUDING REMARKS

The antiplane problem of multiple circular inclusions of different radii and of different
shear moduli, perfectly bonded to a matrix of infinite extent, is analyzed in this paper.
Within the framework of the procedure of analytical continuation and the method of
successive approximations, the solution associated with the heterogeneous problem is
sought as a transformation on the solution to the corresponding homogeneous problem.
Due to this important property, the solution related to the problem containing any number
of inclusions can be immediately obtained as the corresponding homogeneous solution is
solved. Numerical examples of three circular inclusions embedded in an infinite matrix, in
a half-plane matrix, and in an infinite strip are used to demonstrate the efficiency and
universality of the present approach. The stress intensity factor of a single crack interacted
with the surrounding circular inclusions is also examined and discussed in the present study.
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